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Atomistic Modeling of Point Defects and Diffusion
in Copper Grain Boundaries
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Abstract. The atomic structure of several symmetrical tilt grain boundaries (GBs) in Cu and their interaction
with vacancies and interstitials as well as self-diffusion are studied by molecular statics, molecular dynamics,
kinetic Monte Carlo (KMC), and other atomistic simulation methods. Point defect formation energy in the GBs
is on average lower than in the lattice but variations from site to site within the GB core are very significant. The
formation energies of vacancies and interstitials are close to one another, which makes the defects equally important
for GB diffusion. Vacancies show interesting effects such as delocalization and instability at certain GB sites. They
move in GBs by simple vacancy-atom exchanges or by “long jumps” involving several atoms. Interstitial atoms can
occupy relatively open positions between atoms, form split dumbbell configurations, or form highly delocalized
displacement zones. They diffuse by direct jumps or by the indirect mechanism involving a collective displacement
of several atoms. Diffusion coefficients in the GBs have been calculated by KMC simulations using defect jump
rates determined within the transition state theory. GB diffusion can be dominated by vacancies or interstitials,
depending on the GB structure. The diffusion anisotropy also depends on the GB structure, with diffusion along the
tilt axis being either faster or slower than diffusion normal to the tilt axis. In agreement with Borisov’s correlation,
the activation energy of GB diffusion tends to decrease with the GB energy.

Keywords: grain boundary, point defects, diffusion, computer modeling

1. Introduction

Grain boundary (GB) diffusion controls the kinetics of
many microstructural changes, phase transformations,
solid-state reactions, creep, and other processes in solid
materials at elevated temperatures [1]. For many tech-
nological applications it is important to be able to pre-
dict diffusion coefficients in GBs by calculation. A pre-
requisite of such calculations is a knowledge of atomic
mechanisms by which point defects move in GBs.
Because existing experimental methods do not pro-
vide direct information on GB diffusion on the atomic
level, the current knowledge of diffusion mechanisms
comes primarily from atomistic computer modeling
[2, 3].

It has been assumed since many years that atoms
move in GBs predominantly by simple exchanges with
vacancies, i.e., by the same mechanism as in the lattice
[1, 4]. The vacancy mechanism appears to be consistent

with experimental activation energies of GB diffusion
and was confirmed by early atomistic simulations [5].
More recent simulations of symmetrical tilt GBs in Ag
[6, 7] and Cu [8] as well as twist GBs in Cu [9, 10] re-
vealed also an important role of self-interstitials in GB
diffusion. Furthermore, recent diffusion simulations in
� = 5 GBs in Cu [8] identified a number of collective
mechanisms involving vacancies and interstitials, and
even the ring mechanism which can operate without
any pre-existing point defects. Vacancies in � = 5 GBs
have been found to demonstrate interesting structural
effects such as delocalization and instability at certain
cites in the GB core [8].

In this paper we continue the investigation of dif-
fusion in Cu GBs initiated in Ref. [8]. The question
which we intend to address here is whether the re-
sults of Ref. [8] are specific to � = 5 GBs or are gen-
eral and hold for other GBs as well. Another ques-
tion is whether the results of Ref. [8] depend on the
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embedded-atom potential used to describe atomic inter-
actions in Cu. To answer these questions we re-examine
diffusion in � = 5 symmetrical tilt GBs in Cu with a
different embedded-atom potential and study diffusion
in four other GBs with different tilt axes and GB planes.
Our methodology is similar to that of Ref. [8] with
slight variations. The dominant diffusion mechanisms
in GBs are identified by molecular dynamics (MD),
while GB diffusion coefficients are calculated by ki-
netic Monte Carlo (KMC) simulations. The catalog of
rate constants required for KMC simulations is gener-
ated using the transition state theory of rate processes.
By comparing diffusion coefficients calculated for dif-
ferent mechanisms, the dominant diffusion mechanism
in each GB and in each diffusion direction is identified
and correlations between diffusion characteristics, on
one hand, and the GB structure and energy, on the other
hand, are examined.

2. Grain Boundary Structure

2.1. Interatomic Potential
and Simulation Conditions

Atomic interactions in Cu were described by an
embedded-atom potential constructed in Ref. [11]. The
potential accurately reproduces experimental values of
the equilibrium lattice constant, cohesive energy, elas-
tic constants, phonon frequencies, thermal expansion,
vacancy formation energy, stacking fault energy, and
other properties of Cu. The potential is also fit to first-
principles energy-volume relations of fcc Cu and a
number of alternative computer-generated structures of
Cu. The incorporation of first-principles data is known
to improve the transferability of potentials to various
atomic configurations encountered in atomistic simu-
lations [12].

The geometry of our simulation block is illustrated
in Fig. 1. The block contains two grains joined along
the GB plane which is parallel to the x and z axes.
Each grain contains free (dynamic) atoms, which are
able to move under interatomic forces, as well as fixed
atoms which are fixed in their perfect lattice positions
relative to one another. Periodic boundary conditions
are applied in directions parallel to the GB plane. The
slabs of fixed atoms serve to represent lattice regions far
away from the GB. The slabs are able to move in a rigid-
body matter in the direction normal to the GB plane in
order to accommodate the local expansion of the GB
core due to its presumably more open structure than the

free atoms
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θ: tilt angle

fixed atoms
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Figure 1. Schematic geometry and boundary conditions in grain
boundary simulations. tx and tz are translation vectors parallel to the
grain boundary plane.

fcc bulk. They are also allowed to move parallel to the
GB plane to explore microscopic degrees of freedom of
the GB. The block typically contains over a thousand
free atoms.

The GB is initially created by aligning the desired
crystallographic plane parallel to the intended GB plane
and the tilt axis direction parallel to the z-direction. A
180◦ rotation of one grain relative to the other about
the normal n to the GB plane produces a symmetrical
tilt GB with a certain reciprocal density of coincidence
sites �. Six high-angle symmetrical tilt GBs have been
created and studied in this work: � = 5(210)[001] θ =
53.13◦,� = 5(310) [001] θ = 36.87◦,� = 9(12̄2)[011]
θ = 38.94◦, � = 11(31̄1)[011] θ = 50.48◦, � =
7(23̄1)[111] θ = 38.21◦, and � = 13(34̄1)[111] θ =
27.80◦, where θ is tilt angle.

2.2. γ Surfaces of Grain Boundaries

The energy of each GB was minimized with respect
to local atomic displacements of dynamic atoms and
rigid-body translations of the grains. The energy mini-
mization was performed by the γ surface method [13].
This method was originally developed in the context of
dislocations and planar faults and recently applied to
GBs [14]. In the γ surface method, the partially relaxed
GB energyγ is calculated as functions of the translation
vector t of one grain relative to the other parallel to the
GB plane (see Fig. 1). The partial relaxation includes
local atomic displacements and rigid translations of
the grains normal to the GB plane but not parallel to
it. Local minima on the γ surface γ (tx , tz) correspond
to relative translations of the grains producing stable
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Figure 2. γ surfaces of symmetrical tilt grain boundaries in Cu.
(a) � = 9(12̄2)[011] GB; (b) � = 7(23̄1)[111] GB. Grain transla-
tions are measured in units of the lattice parameter a. Local minima
and maxima of energy are marked by filled and open symbols, re-
spectively. The respective energies are given in the key.

or metastable GB structures. Such structures are ex-
amined separately by full relaxation which includes
arbitrary displacements of dynamic atoms in all direc-
tions with simultaneous rigid-body displacements of
the grains perpendicular to the GB plane. The deep-
est energy minimum corresponds to the ground state
structure of the GB.

Contour plots of typical γ surfaces of GBs are il-
lustrated in Fig. 2, where the translations tx and tz are
measured in units of the lattice parameter a. The con-
tours are plotted in every 0.06 to 0.08 J/m2 depending
on the complexity of the surfaces. For [111] GBs, the
full relaxation results in a small shift of the energy min-
imum away from its position on the γ surface. For the
� = 7 GB, this shift has a component 0.083a parallel
to the tilt axis, with the result that (111) planes be-
come discontinuous across the GB. In contrast, for the
� = 13 GB the shift is normal to the tilt axis and (111)
planes remain continuous.

2.3. Atomic Structure of Grain Boundaries

The relaxed ground state structures of the six GBs stud-
ied in this work are shown in Figs. 3, 4 and 5. The
structure of � = 5 GBs (Fig. 3) is well known from

[1 3 0]

[3 1 0]

-

[0 0 1]
1 2

1' 2'

3
I 4

5
6

5'
6'

[1 2 0]

[2 1 0]

[0 0 1]

-

1 2

1' 2'

3
I

(a)

(b)

Figure 3. Relaxed atomic structure of � = 5 [001] symmetrical tilt
grain boundaries in Cu. (a) θ = 53.13◦ (210) GB; (b) θ = 36.87◦
(310) GB. Circles and squares mark atomic positions in alternating
(002) planes perpendicular to the tilt axis [001]. Selected atomic sites
are labeled for further reference. The prime marks symmetrically
equivalent sites within the same structural unit. Symbol I marks an
interstitial site. Dashed lines delineate structural units.

experimental observations and previous simulations [4,
8, 15–17]. Both � = 5 GBs consist of topologically
identical structural units which represent a capped trig-
onal prism in three-dimensional space. The boundaries
only differ in the way the structural units are connected
to each other.

The � = 9(12̄2)[011] and � = 11(31̄1)[011] GBs
(Fig. 4) are composed of the same, although slightly
distorted, capped trigonal prisms. The � = 11 GB is
often represented by diamond-shape units, but Fig. 4(b)
demonstrates that such units are nothing but fragments
of capped trigonal prisms. The structures of these GBs
are also in agreement with previous computer simula-
tions [18] and experimental observations [19].

The structural units of the � = 7(23̄1)[111] and
� = 13(34̄1)[111] GBs (Fig. 5) are capped trigonal
archimedean prisms which look like hexagons in the
projection normal to the tilt axis. These units are
bridged in the � = 7 GB and interlocked in the � =
13 GB. The side projection of the � = 7 GB shown
in Fig. 5(b) illustrates the discontinuity of (111) planes
mentioned above. Note that the same kind of discon-
tinuity in the � = 7 GB was observed by atomistic
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Figure 4. Relaxed atomic structure of [011] symmetrical tilt grain
boundaries in Cu. (a) � = 9(12̄2) θ = 38.94◦ GB; (b) � = 11(31̄1)
θ = 50.48◦ GB. Circles and squares mark atomic positions in al-
ternating (022) planes perpendicular to the tilt axis [011]. Selected
atomic sites are labeled for further reference. The prime marks sym-
metrically equivalent sites within the same structural unit. Symbols
I and J mark interstitial sites. Dashed lines delineate structural units.

simulations in Pd [17]. A similar structure of the � = 7
GB was observed by high-resolution transmission elec-
tron microscopy in Al [20].

The energies of all six GBs are summarized in
Table 1. We see that the � = 11(31̄1)[011] GB has the
lowest energy, which fact is consistent with its highly
symmetrical structure and fcc-like local configurations
in the GB core.

3. Point Defects in Grain Boundaries

3.1. Point Defect Calculations

Our diffusion calculations rest on the assumption that
atomic migration in GBs is mediated by the migration
of individual point defects: vacancies and interstitials.
This model may not apply at high temperatures at which
GBs become highly disordered and the notion of point
defects may lose sense [17]. Our calculations are thus
relevant to diffusion at relatively low and medium tem-
peratures at which GBs have a well-defined ordered
structure and support point defects.

The first step of the work was to study the energy,
entropy and structure of point defects in GBs. Bulk
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Figure 5. Relaxed atomic structure of [111] symmetrical tilt grain
boundaries in Cu. Circles, squares, and triangles mark atomic
positions in (333) planes perpendicular to the tilt axis [111].
(a) � = 7(23̄1) θ = 38.21◦ GB, projection perpendicular to the
tilt axis. (b) Same GB, projection parallel to the tilt axis. Filled sym-
bols mark the upper grain and open symbols the lower grain. The
relative shift of the grains is about 0.03 nm in the direction parallel to
the tilt axis. (c) � = 13(34̄1) θ = 27.80◦ GB. Selected atomic sites
are labeled for further reference. Symbols I and J mark interstitial
sites. Dashed lines delineate structural units.

properties of point defects in Cu calculated with the
same EAM potential are summarized in Table 2. The
bulk interstitial is considered in its ground state config-
uration, which is a [001]-split dumbbell. The dumbbell

Table 1. Energies of Cu grain boundaries studied in this work.

GB Tilt angle θ (◦) GB energy (J/m2)

� = 5(210)[001] 53.13 0.952

� = 5(310)[001] 36.87 0.905

� = 9(12̄2)[011] 38.94 0.834

� = 11(31̄1)[011] 50.48 0.301

� = 7(23̄1)[111] 38.21 0.867

� = 13(34̄1)[111] 27.80 0.842
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Table 2. Characteristics of point defect formation and migration in
bulk Cu calculated with the present EAM potential [11] using a 864-
atom simulation block with periodic boundaries. Experimental data
are given in parentheses. E f —formation energy, S f —formation
entropty, ν0—attempt frequency.

Defect E f (eV) S f /kB Em (eV) ν0 (THz)

Vacancy 1.272 1.399 0.689 7.6

(1.27a;1.28b) (2.35c) (0.71b)

Interstitial 3.066 7.429 0.098 2.0

(2.8–4.2c) (0.12d)

aReference [21].
bReference [22].
cReference [23].
dReference [24].

moves by a collective jump of three atoms in which
the center of mass of the dumbbell translates by vec-
tor (1/2)[110] with a simultaneous 90◦ rotation of the
dumbbell in the (001) plane to the [010] orientation.
The numbers reported in Table 2 were calculated by
including both atomic and volume relaxation of the
simulation block.

The defect formation energy Eα
f at a particular site

α in the GB core is determined from the equation

Eα
f = Eα

GB − EGB ± Ebulk

N
, (1)

where the positive sign refers to a vacancy and the
negative sign to an interstitial. Here N is the number
of dynamic atoms in the simulation block, Eα

GB is the
energy of a (N ±1)-atom simulation block with a point
defect at site α, EGB is the energy of the initial N -atom
block with a GB but without the defect, and Ebulk is
the energy of an N -atom perfect lattice block. Thus,
the vacancy formation energy in a GB has the meaning
of the energy cost of removing an atom from a GB
site α and placing it at a perfect lattice site far away
from the GB. The interstitial formation energy has a
similar meaning except that the atom is moved from
the perfect lattice to the GB. The energies Eα

GB and EGB

are determined after a static relaxation of the simulation
block including both atomic displacements and rigid-
body translations of the grains (Fig. 1).

The point defect formation entropy was calculated
in the classical harmonic approximation in which the
vibrational entropy S of a system of N dynamic atoms
at a temperature T is given by

S = kB

3N∑
i=1

ln

(
kB T

hνi

)
+ 3NkB . (2)

Here νi are the frequencies of normal atomic vibrations
determined by diagonalizing the dynamical matrix of
the system, kB is the Boltzmann constant, and h is
the Plank constant. The defect formation entropy is
determined from the difference in the entropy of a sim-
ulation block with and without a point defect under con-
stant N conditions. As with the defect energy, the for-
mula of the defect formation entropy Sα

f at a GB site α is

Sα
f = Sα

GB − SGB ± Sbulk

N
. (3)

Here Sα
GB is the entropy of a (N ± 1)-atom simulation

block with a point defect at site α, SGB is the entropy
of the initial N -atom block with a GB but without the
defects, and Sbulk is the entropy of an N -atom perfect
lattice block. Note that the kB T factor cancels out in
Eq. (3), so that Sα

f does not depend on temperature.1

The obtained energies and entropies of point defects
at selected GB sites are summarized in Table 3. In
Fig. 6, the vacancy formation energy is plotted as a
function of the distance from the GB for all six GBs
studied here. Two observations can be made from these
plots. First, all deviations of the vacancy formation en-
ergy from the bulk value are highly localized within a
relatively narrow (±0.5 nm) core region. Beyond that
region the energy practically coincides with its undis-
turbed bulk value. Second, the vacancy formation en-
ergy in the GB core is highly non-uniform, the fact
which is also evident from Table 3. It can be as low as
20% of the bulk value at some sites and higher than the
bulk value at other sites.

In Fig. 7 we examine the possible correlation be-
tween the defect formation energy in the GB core and
the GB energy. Even though the points are scattered
over a wide range, the minimum defect formation en-
ergy in each GB tends to decrease with the GB energy.
An extrapolation of the minimum defect formation en-
ergy to zero gives the GB energy of about 1.1–1.2 J/m2

for both vacancies and interstitials. This number gives
an estimate of the maximum possible energy of sym-
metrical tilt GBs in Cu. Indeed, if the defect formation
energy is negative at least at one site in the GB core,
the GB is unstable against a spontaneous generation of
point defects at that site and should transform to a new
structure.

There is another important observation that can be
made from Fig. 7: while in the bulk the interstitial
formation energy is much higher than the vacancy
formation energy (see Table 2), in high-energy GBs
both defects have comparable formation energies. This
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Table 3. Energy (E f ) and entropy (S f ) of point defect formation
at selected grain boundary sites. See Figs. 3–5 for site numbering.

E f

GB Defect Site (eV) S f /kB Structure

� = 5(210)[001] Vacancy 1-1′ 0.304 2.236 Delocalized

2-1̃ 0.508 3.068 Delocalized

3 1.351 1.676 Localized

Interstitial I 0.234 1.058 Localized

� = 5(310)[001] Vacancy 1 0.623 1.355 Localized

2 1.072 2.160 Localized

3 1.360 0.661 Localized

4 0.760 1.646 Localized

5 1.009 1.528 Localized

Interstitial I 0.190 1.640 Localized

I-Ĩ 0.837 2.844 Delocalized

� = 9(12̄2)[011] Vacancy 1-2 0.583 2.396 Delocalized

3 1.179 1.643 Localized

4 1.089 1.975 Localized

5 1.254 1.908 Localized

7 1.308 1.394 Localized

8 1.271 1.594 Localized

Interstitial I 0.756 2.901 Localized

I 0.907 4.252 Dumbbell

� = 11(31̄1)[011] Vacancy 1 1.100 1.399 Localized

2 1.347 1.524 Localized

3 1.280 1.570 Localized

4 1.262 1.547 Localized

Interstitial I 1.490 8.019 Delocalized

J 1.722 4.056 Localized

� = 7(23̄1)[111] Vacancy 1 0.318 0.876 Localized

2 0.867 3.403 Localized

3 0.746 1.440 Localized

10 1.127 2.325 Localized

12 1.240 2.461 Localized

Interstitial I 0.462 1.443 Dumbbell

J 0.885 1.971 Localized

� = 13(34̄1)[111] Vacancy 1 0.185 1.185 Localized

4 1.239 0.975 Localized

5 0.857 2.153 Localized

9 1.181 2.360 Localized

11 1.145 1.783 Localized

Interstitial I 0.197 0.382 Dumbbell
J 0.907 2.181 Localized

allows us to conclude that, in contrast to the bulk sit-
uation, vacancies and interstitials are equally impor-
tant in GBs and should be both included in diffusion
simulations.

Figure 6. Vacancy formation energy as a function of the distance
from the grain boundary core in Cu. (a) [001] symmetrical tilt GBs;
(b) [011] symmetrical tilt GBs; (c) [111] symmetrical tilt GBs. The
horizontal line indicates the vacancy formation energy in the bulk.

3.2. Grain Boundary Structure with Point Defects

The structures of GBs containing point defects have
been carefully examined for the possible delocalization
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Figure 7. Point defect formation energy as a functions of grain boundary energy in Cu. (a) vacancy; (b) interstitial. The vacancy formation
energies in the � = 3(11̄1)[011] symmetrical twin and the intrinsic stacking fault (SF) are included for comparison. The horizontal line indicates
the defect formation energy in bulk. Dashed lines show rough extrapolations through the lowest defect formation energies.

and instability effects discovered in � = 5 GBs [8].
The following observations have been made.

3.2.1. Vacancies in Grain Boundaries. A vacancy
typically induces relatively small relaxations of neigh-
boring atoms and remains well localized at a site where
it is created. In some cases, however, the relaxations are
so strong that the vacancy effectively delocalizes in the
GB structure. Examples of vacancy delocalization are
given in Fig. 8. When a vacancy is created at site 2 in the
� = 5(210)[001] GB (Fig. 8(a)), atom 1 and especially
atom 1̃ relax towards the vacant site so strongly that the
free volume associated with the vacancy spreads over
a relatively large region. (The tilde symbol marks an

equivalent position in a neighboring structural unit.)
This delocalization was also observed by Sørensen
et al. [8] with a different embedded-atom potential.
Similarly, when a vacancy is created at site 2 in the � =
9(12̄2)[011] GB (Fig. 8(b)), the atom residing initially
at site 1′ relaxes to the midpoint between sites 1′ and
2, which results in a vacancy delocalization between
the two sites. Exactly the same configuration is ob-
tained when we try to create a vacancy at site 1′. Thus,
by looking at the final configuration shown in Fig. 8(b)
one can never tell at which site (1′ or 2) the vacancy was
created. We believe that the vacancy delocalization is
a general phenomenon which may occur in many GBs
and in core regions of other extended defects.
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Figure 8. Examples of vacancy delocalization in Cu grain bound-
aries. (a) Vacancy at site 2 in the � = 5(210)[001] GB. Atom 1 of
the same structural unit and atom 1̃ of the neighboring structural
unit strongly relax towards the vacancy. (b) Vacancy at site 2 in the
� = 9(12̄2)[011] GB. Atom 1′ strongly relaxes towards the vacancy.
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Figure 9. Examples of vacancy instability in Cu grain boundaries. (a) Unstable vacancy at site 6 in the � = 5(310)[001] GB. The atom initially
at site 1 fills the vacancy. (b) Unstable vacancy at site 6 in the � = 9(12̄2)[011] GB. The atom initially at site 2 fills the vacancy. (c) Unstable
vacancy at site 9 in the � = 7(23̄1)[111] GB. The atom initially at site 2 fills the vacancy while the atom initially at site 1 simultaneously fills
site 2. (d) Unstable vacancy at site 10 in the � = 13(34̄1)[111] GB. The atom initially at site 8̃ of the neighboring structural unit fills the vacancy
while the atom initially at site 1̃ simultaneously fills site 8̃.

Another interesting observation is the vacancy insta-
bility at certain GB sites. This effect is illustrated by
four examples in Fig. 9. The first example (Fig. 9(a))
verifies the observation of Sørensen et al. [8] for the
� = 5(310)[001] GB: a vacancy created at site 6 is
filled by atom 1 during the relaxation process. In other
words, a vacancy at site 6 is absolutely unstable and
spontaneously transforms to a vacancy at sites 1. Simi-
larly, a vacancy created at site 6 in the � = 9(12̄2)[011]
GB (Fig. 9(b)) relaxes to a vacancy delocalized be-
tween sites 1′ and 2. As in the previous case, site 6
does not support a stable vacancy and is filled by atom
2 in an athermal manner. In the � = 7(23̄1)[111] GB
(Fig. 9(c)), the unstable vacancy at sites 9 is filled by a
collective jump of two atoms (1 and 2), resulting in a
stable vacancy at site 1. Similarly, the unstable vacancy
at site 10 in the � = 13(34̄1)[111] GB (Fig. 9(d)) is
filled by a collective jump of atoms 1̃ and 8̃, which
results in a stable vacancy at site 1̃. Table 4 gives a
complete list of all GB sites that do not support a sta-
ble vacancy. We can see that the � = 7(23̄1)[111] and
� = 13(34̄1)[111] GBs are especially prone to va-
cancy instability and contain only a few stable vacancy
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Table 4. Unstable vacancy sites and atomic
motion during relaxation. See Figs. 3, 4 and 5
for site numbering.

GB Site Atomic motion

� = 5(310)[001] 6 1→6

� = 9(12̄2)[011] 6 2→6

� = 7(23̄1)[111] 4 1→4

5 1→5

6 1→6

7 1̃→7

8 1→8

9 1→2→9

11 1→11

13 3→13

� = 13(34̄1)[111] 2 1→2

3 1̃→3

6 1→6

7 5̃→7

8 1→8

10 1̃→ 8̃→10

sites. The vacancy instability appears to be a generic
phenomenon in GBs, which is probably more common
than vacancy delocalization. We note that unstable va-
cancies were also found in near-surface layers of met-
als, in particular under the (110) and (111) surfaces of
Cu [25, 26].

3.2.2. Interstitials in Grain Boundaries. Interstitials
in GBs were found in three structural forms: (i) local-
ized in a relatively open region (“pore”), (ii) delocal-
ized over a relatively large area, and (iii) interstitial
dumbbells. For example, the most favorable intersti-
tial site in the � = 5(210)[001] GB is the center of the
triangle formed by atoms 2, 2′, and 3 (Fig. 3(a)). In-
terstitial atoms are strongly attracted to this site and
induce only modest relaxations on neighboring atoms.
Well localized interstitials with the same triangular en-
vironment were also found in the � = 5(310)[001] and
� = 9(12̄2)[011] GBs (site I in Figs. 3(b) and 4(a)).
The � = 7(23̄1)[111] and � = 13(34̄1)[111] GBs
support a localized interstitial J above regular sites 7
and 4, respectively (Fig. 5).

Figure 10 illustrates a delocalized interstitial in the
� = 5(310)[001] GB. Atomic relaxations induced by
the interstitial spread over two structural units and re-
sult in a configuration with two interstitials I and Ĩ and

[1 3 0]

[3 1 0]

-

[0 0 1]
I

12 ~

I
~

6
~

Figure 10. Delocalized interstitial in the � = 5(310)[001] GB in
Cu.

a vacancy delocalized between sites 1̃, 2 and 6̃. This
configuration can be viewed as an interstitial at site I
and a Frenkel pair formed by interstitial Ĩ and a va-
cancy delocalized between sites 1̃ and 6̃. Alternatively,
it can be viewed as an interstitial at site Ĩ and a Frenkel
pair formed by interstitial I and a vacancy delocalized
between sites 2 and 6̃.

Another example of a delocalized interstitial is
shown in Fig. 11. When introduced at a midpoint I
between sites 1 and 1∗ in the � = 11(31̄1)[011] GB
(the asterisk marks an equivalent site in a neighbor-
ing structural unit along to the tilt axis), the interstitial
atom gives rise to a wide zone of significant atomic
displacements parallel to the tilt axis [011]. This zone
extends over 6 to 7 atomic layers on either side of the
interstitial and is somewhat reminiscent of a crowdion.
Although the formation energy of this highly delocal-
ized form of an interstitial is relatively large (1.49 eV),
it is highly mobile due to an extremely small migration
barrier (∼0.01 eV).

Interstitials can also form split dumbbell config-
urations aligned either parallel or normal to the tilt
axis. Dumbbells aligned normal to the tilt axis in the
� = 7(23̄1)[111] and � = 13(34̄1)[111] GBs are il-
lustrated in Fig. 12. In the � = 9(12̄2)[011] GB, an
interstitial atom localized initially at site I (Fig. 4(a))
can couple with atom 2 and, at a small energy cost,
form a split dumbbell configuration oriented parallel
to the tilt axis.

4. Diffusion Mechanisms in Grain Boundaries

In the previous work [8], diffusion mechanisms in
� = 5 Cu GBs were studied by a basin constrained
implementation of MD. The MD algorithm included
an automated detection of defect jumps and on-the-fly
evaluation of the respective jump barriers. After every
jump the system was returned to the original energy
basin and the simulation continued. In the present work
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Figure 11. Delocalized interstitial atom in the � = 11(31̄1)[011]
GB in Cu. (a) Projection perpendicular to the tilt axis; (b) Projection
parallel to the tilt axis. Symbol I indicates the position of the inter-
stitial atom. Notice the wide zone of strong atomic displacements
parallel to the tilt axis [011].

a more traditional implementation of MD was applied,
which ran faster and allowed us to afford a larger sim-
ulation block (∼1200 dynamic atoms). A point defect
was created at an arbitrary position in the GB core and
a long MD run was implemented at a constant temper-
ature of 1000 K. The program automatically generated
snapshots at points of time when significant atomic dis-
placement relative to a previously stored configuration
pointed to a possible jump. The diffusion mechanisms
were determined a posteriori by analyzing the whole
set of snapshots which were relaxed in a static mode af-
ter the MD run. Besides defect jumps observed by MD
simulations, a number of additional jumps were consid-
ered based on geometric considerations and previous
experience, and their plausibility was also evaluated in
the static mode as discussed below (Section 5). Typi-
cal diffusion mechanisms established this way can be
summarized as follows:
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[1 1 1]

-
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Figure 12. Interstitial dumbbells in Cu grain boundaries. (a) � =
7(23̄1)[111] GB. An interstitial atom introduced near site I forms a
dumbbell with an atom initially at site 7̃. (b) � = 7(34̄1)[111] GB.
An interstitial atom introduced near site I forms a dumbbell with an
atom initially at site 4̃. Both dumbbells are normal to the tilt axis and
to the grain boundary plane.

4.1. Vacancy Migration

In agreement with the existing paradigm, vacancies
were typically found to move in GBs by exchanges
with individual atoms (Fig. 13), just as they do in the
bulk. However, in contrast to bulk diffusion, vacancies
in GBs can also induce collective jumps of two or more
atoms. Such “long” vacancy jumps always involve sites
that cannot support a stable vacancy. For example, the
unstable vacancy at site 6 in the � = 5(310)[001] GB
is responsible for the long vacancy jump 1′ → 6′ → 4̃
involving two atoms as well as for the 1 → 6 → 2̃ → 1̃
jump involving three atoms (Fig. 13(a)). Long vacancy
jumps are especially important in the � = 7(23̄1)[111]
and � = 13(34̄1)[111] GBs in which only few sites
support a vacancy. For example, the vacancy jump
5 → 10 → 8̃ → 1̃ in the � = 13 GB (Fig. 13(d)) can
be viewed as an attempt of a vacancy at site 5 to jump
to a neighboring site 10. Since site 10 does not support
a stable vacancy and should be immediately filled by
a collective jump of atoms 8̃ and 1̃ (cf. Fig. 9(d)), the
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Figure 13. Vacancy jumps in selected grain boundaries in Cu. Only typical jumps included in KMC simulations are shown. (a) � = 5(310)[001]
GB; (b) � = 9(12̄2)[011] GB; (c) � = 7(23̄1)[111] GB; (d) � = 13(34̄1)[111] GB. Jumps are only shown in one direction, but reverse jumps
are also included in KMC simulations.

vacancy ends up at site 1̃. The whole transition occurs
by a concerted displacement of all three atoms.

Vacancy jumps parallel to the tilt axis are not
shown in Fig. 13 but were also found in some of
the GBs. For example, in the � = 9(12̄2)[011] and
� = 11(31̄1)[011] GBs a vacancy at site 1 can jump
to a equivalent site 1∗ in a neighboring structural unit
parallel to the tilt axis.

4.2. Interstitial Migration

Localized interstitials can move by two mechanisms:
the direct mechanism and the indirect one. Under the
direct mechanism an interstitial atom travels along a
GB by jumping between neighboring interstitial po-
sitions. While energetically unfavorable in � = 5 GBs
[8], this mechanism was found to operate in some other
GBs studied in this work. For example, interstitial I in
the � = 9(12̄2)[011] GB (Fig. 4(a)) can migrate along
the tilt axis by hopping directly to an equivalent site I∗

in a neighboring structural unit.
Under the indirect mechanism, an interstitial atom

displaces a neighboring regular atom to another inter-
stitial position and takes its place. This process occurs
by a simultaneous jump of both atoms. Furthermore, an

interstitial atom can initiate a chain of atomic displace-
ments and push out the last atom of the chain into an-
other interstitial position, which can be well separated
from the initial one. All atoms involved in this pro-
cess move in a concerted manner and not one after an-
other. Figure 14(a) and (b) illustrate this mechanism for
diffusion perpendicular to the tilt axis. Notice that
the same interstitial jump (e.g., I → Ĩ in the � =
5(310)[001] GB) can be implemented in several differ-
ent ways, some of them involve more atoms than others.

The four-atom jump I → 2 → 6 → 2̃ → Ĩ in
Fig. 14(a) actually happens in two steps, with the
formation of an intermediate delocalized interstitial
configuration shown in Fig. 10. Similarly, an inter-
mediate delocalized configuration was found for the
I → 2 → 3 → Ĩ jump in the � = 9(12̄2)[011] GB.
The indirect interstitial mechanism can also operate
for diffusion parallel to the tilt axis in the [001] and
[011] GBs. Especially important are the I→1→I∗

jump in � = 5 GBs and the I→2→I∗ jump in the
� = 9(12̄2)[011] GB, although other indirect jumps
parallel to the tilt axis can play a role too. No indirect
interstitial jumps parallel to the tilt axis were found in
[111] GBs.

An interstitial dumbbell always moves by a collec-
tive jump of three or more atoms, as it does also in
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Figure 14. Interstitial jumps in selected grain boundaries in Cu. Only typical jumps included in KMC simulations are shown. (a) � = 5(310)
GB; (b) � = 11(31̄1) GB; (c) � = 7(23̄1) GB; (d) � = 13(34̄1) GB.

the bulk. For example, the dumbbell jumps shown in
Fig. 14(c) and (d) involve five or six atoms. A dumb-
bell can also transform into a localized configuration
J, followed by its split into a dumbbell one (111) layer
deeper. Repeated transformations of this type can make
an important contribution to diffusion parallel to the tilt
axis.

Finally, the highly delocalized interstitial I in the
� = 11(31̄1)[011] GB (Fig. 11) can migrate along the
tilt axis with an extremely small activation barrier. Each
step of this motion is accompanied by a very small dis-
placement of each individual atom, yet the entire relax-
ation zone translates by one period. Alternatively, the
interstitial atom located in the center of the displace-
ment zone can jump to a type-J position (Fig. 4(b)) and
become a localized interstitial.

5. Calculation of Defect Concentrations
and Rate Constants

Diffusion calculations require a knowledge of point de-
fect concentrations in GBs. Assuming that such con-
centrations are small, the fraction of time that a par-
ticular site α in the GB core is occupied by a defect
(vacancy or interstitial) can be calculated by

cα = exp

(
− Eα

f − TSα
f

kB T

)
, (4)

where Eα
f and Sα

f are the defect formation energy and
entropy at site α.

Rate constants calculations of defect jumps present a
more difficult task. The absolute rate 
αβ of a particular
defect jump α → β (jump probability per unit time)
can be calculated from the transition state theory ex-
pression [27]


αβ = ν
αβ

0 exp

(−Eαβ
m

kB T

)
. (5)

Here Eαβ
m is the migration energy (energy barrier) de-

fined as the difference in energy between the transition
state and the initial state, and ν

αβ

0 is the attempt fre-
quency of the jump given by

ν
αβ

0 =
∏3N

i=1 νi∏3N−1
i=1 ν∗

i

, (6)

where νi are normal vibrational frequencies in the ini-
tial state and ν∗

i are such frequencies at the saddle
point. The dominator of this expression contains one
frequency less than the numerator because, as we ap-
proach the transition state, one vibrational degree of
freedom converts to a translational one representing
the motion of our system along the reaction path.

The main challenge of rate constant calculations is
finding the saddle point configuration of a defect jump.
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Earlier calculations were based on the “drag” method
[6, 7, 9, 10] in which an atom making a jump was moved
from the initial to the final position by small steps with
a constrained relaxation after each step. The “drag”
method proved to be very efficient in many diffusion
calculations but it has the drawback that only single-
atom jumps can be simulated. This method would be
inadequate for the purposes of our work since many de-
fect jumps in GBs involve collective motion of atomic
groups. More advanced methods of saddle point search
have recently been reviewed by Henkelman et al. [28].
In the present work we used the nudged elastic band
(NEB) method [28, 29] which had been successful in
simulating a variety of rate processes, including GB
diffusion [8].

Even though the transition-state theory expressions
(5) and (6) involve only the initial and transition states
but not the final state of the jump, in the NEB method
both the initial and final states should be known. The
method proceeds as follows. All atoms in the simula-
tion block should be labeled. The first step is to create
a set of copies (or “images”) of the system which ini-
tially represent intermediate states of the jump. This
can be achieved by a linear interpolation of atomic co-
ordinates between the initial and final states. The total
energy of this set of images, called the “elastic band”,
is defined as the sum of potential energies of individual
images due to interatomic forces plus a fictitious energy
of elastic deformation of imaginary springs connecting
the images. This total energy is minimized with respect
to atomic displacements in all images. At each itera-
tion of the minimization process, some components of
the interatomic and elastic forces are turned to zero
(“nudging”) in order to accelerate the convergence.
It can be shown that the relaxed elastic band should
position itself approximately along the minimum en-
ergy path going through the saddle point. Therefore,
the saddle-point configuration can be approximated by
the image with the highest potential energy along the
elastic band. Furthermore, an interpolation of atomic
coordinates between the maximum-energy image and
its neighbors can be applied to locate the saddle point
more accurately. This procedure is clearly not restricted
to single-atom jumps and equally applies to any collec-
tive transformation.

There is one aspect of the calculation that should be
discussed here in more detail since it affects the rate
constants delivered by the method. The relaxation of
the elastic band was performed in this work under a
constant volume corresponding to the initial state of

the jump (GB with a single point defect). Since the
saddle-point configuration often has a more open struc-
ture than the initial state, by moving our system to the
saddle point we increase the hydrostatic pressure in
the block by a small amount �p. The effect of a small
change in pressure on the jump barrier Eαβ

m is negligi-
ble, but the effect on the attempt frequency can be more
significant [30]. Indeed, a change in pressure affects
vibrational frequencies of atoms and thus alters the vi-
brational entropy of the system at the saddle point by a
small amount �S. This, in turn, leads to a change in the
attempt frequency ν

αβ

0 by a factor of exp(�S/kB). In
order to recover the true value of the attempt frequency,
ν

αβ

0 determined under a constant volume should be
multiplied by a factor of exp(−�S/kB). Applying the
thermodynamic relation (∂S/∂p)T = −βV (S being
the system entropy) [31], the following linear relation
should hold between �S and �p [30]:

�S = −βV �p, (7)

where V is the system volume and β is the vol-
ume coefficient of thermal expansion defined by β =
V −1(∂V/∂T )p. The latter was determined for Cu by
computing the vibrational entropy �S of a perfect lat-
tice block as a function of pressure p and extrapolat-
ing the ratio �S/pV to p = 0. This calculation gives
β = 4.458 × 10−5 K−1. It should be remembered that
the product pV (and thus the pressure p) can be read-
ily calculated within the embedded atom method for
any atomic configuration [30]. For a defect jump in
a GB, the excess pressure at the saddle point equals
�p = p∗ − p0, where p∗ is the pressure at the saddle
point and p0 is the pressure before the jump.2 Thus,
Eq. (6) for the attempt frequency should be modified
as follows:

ν
αβ

0 =
∏3N

i=1 νi∏3N−1
i=1 ν∗

i

exp

[
β(p∗ − p0)V

kB

]
, (8)

with vibrational frequencies determined under constant
volume conditions. Equation (8) was applied for at-
tempt frequency calculations in GBs throughout this
work. The same equation with p0 = 0 was also used
in bulk calculations reported in Table 2.

6. Calculation of Diffusion Coefficients

For each GB and each type of point defect, a catalog of
the most favored jumps has been created based on two



144 Suzuki and Mishin

criteria. First, jumps with relatively low partial activa-
tion energy Eαβ = Eα

f + Eαβ
m have been selected. In-

deed, the average number of α → β jumps per unit time
is proportional to cα
αβ ∝ exp[−(Eα

f + Eαβ
m )/kB T ],

suggesting that jumps with lower values of Eαβ should
occur more often and that the partial activation en-
ergy can be used for ranking the relative importance
of jumps [8]. Second, the jumps included in the cata-
log should form a penetrating network capable of sup-
porting a macroscopic diffusion flux in any direction in
the GB plane. The number of favored jumps selected
for each GB depends sensitively on the GB structure
and varies between 2 and 9 for the vacancy mechanism
and between 3 and 7 for the interstitial mechanism (not
counting the jump reversals which, of course, were also
included in the catalog). Some of the favored jumps are
shown in Figs. 13 and 14.

The set of defect concentrations cα and the catalog
of rate constants 
αβ at a given temperature T form
the input data set for calculating the GB diffusion
coefficient by KMC simulations. The KMC procedure
applied in this work was similar to the one developed
by Sørensen et al. [8]. In short, a large simulation block
is created with periodic boundaries in two directions
parallel to the GB plane and the thickness of the GB
core in the third direction. The GB structure is mapped
onto this block, all atoms of the block are labeled, and
a single point defect is created at an arbitrary site. The
defect starts to wander along the GB by implementing
random jumps drawn from the catalog. At each step, we
calculate the residence time of the defect at its current
site α,

τα = 1∑kα

β=1 
αβ

,

as well as the jump probabilities

Pαβ = τα
αβ

for all kα jumps that can be made form that site.
The jump direction is decided by generating a ran-
dom number. The chosen jump is implemented by
moving atoms involved in the jump, the clock is ad-
vanced by τα , and the simulation continues. As the de-
fect walks through the GB, it moves atoms around and
thereby induces their diffusion. The defect walk con-
sists of a fixed number of jumps and is repeated a large
number m of times. Once the simulation is complete,
the diffusion coefficient D in a given direction in the
GB plane is determined from the random walk theory

equation [8]

D = Cd
∑m

k=1

∑N
γ=1 χ2

γ k

2Mt
, (9)

where M is the number of atoms in the simulation
block, χγ k is the projection of the total displacement
vector of the γ -th atom resulting from k-th walk, and t
is the total simulation time. In Eq. (9),

Cd =
∑

α

cα

(where the summation runs over all defect sites avail-
able in the simulation block) is the average number
of defects that would be found in the block under
equilibrium conditions. Factor Cd in Eq. (9) makes a
correction for the fact that the simulation block con-
tains exactly one defect at all temperatures, which does
not necessarily coincides with the equilibrium defect
concentration.

The accuracy of the diffusion coefficient determined
from Eq. (9) is extremely high because every jump
attempt is successful and therefore large statistics of
jumping can be readily accumulated. In this work, the
KMC block typically contained M = (2 to 4) ×104

atoms. The total number of defect jumps used for cal-
culating the diffusion coefficient varied between 1010

and 1011.
The KMC simulations were carried out in the tem-

perature range 500–1100 K. The diffusion coefficients
in each GB, plotted in the Arrhenius format log D ver-
sus 1/T , give fairly linear as illustrated in Fig. 15. The
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Figure 15. Arrhenius plots of grain boundary diffusion coefficients
in Cu obtained by KMC simulations. Only the fastest diffusion co-
efficient is shown for each direction in each grain boundary.
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Table 5. Arrhenius parameters of grain boundary diffusion in Cu obtained by fitting
Eq. (10) to KMC results.

Parallel to the tilt axis Normal to the tilt axis

GB Mechanism Q (eV) D0 (m2/s) Q (eV) D0 (m2/s)

� = 5(210)[001] Vacancy 0.532 3.72 × 10−7 0.529 6.74 × 10−7

Interstitial 0.757 8.95 × 10−7 0.859 3.65 × 10−6

� = 5(310)[001] Vacancy 1.172 1.45 × 10−6 1.210 3.27 × 10−6

Interstitial 0.505 1.59 × 10−7 0.759 6.41 × 10−7

� = 9(12̄2)[011] Vacancy 0.906 3.57 × 10−6 0.823 1.26 × 10−6

Interstitial 1.085 7.36 × 10−6 1.091 3.49 × 10−6

� = 11(31̄1)[011] Vacancy 1.373 1.46 × 10−7 1.710 1.10 × 10−6

Interstitial 1.569 1.59 × 10−6 2.126 2.67 × 10−5

� = 7(23̄1)[111] Vacancy 0.972 2.45 × 10−7 0.969 4.17 × 10−7

Interstitial 1.201 2.58 × 10−6 1.171 3.18 × 10−6

� = 13(34̄1)[111] Vacancy 1.120 4.24 × 10−9 1.060 1.28 × 10−8

Interstitial 1.201 7.37 × 10−7 1.340 2.50 × 10−7

plots do have some curvature, but it is relatively small
and cannot be noticed in comparison with the wide (4–8
orders of magnitude) range of D values covered by the
calculations. Considering the linearity of the plots, the
diffusion coefficients were fit by the Arrhenius equation

D = D0 exp

(
− Q

kB T

)
, (10)

which gave us the activation energy Q and pre-
exponential factor D0 for diffusion in each GB. The
Arrhenius parameters are summarized in Table 5.

7. Discussion and Conclusions

By comparing the relevant diffusion coefficients,
the mechanisms that dominate diffusion parallel and
perpendicular to the tilt axis have been identified for

Table 6. Dominant diffusion mechanism in Cu grain bound-
aries for diffusion parallel and normal to the tilt axis. The bold
typeset indicates the fastest diffusion direction.

GB Parallel Normal

� = 5(210)[001] Vacancy Vacancy

� = 5(310)[001] Interstitial Interstitial

� = 9(12̄2)[011] Vacancy Vacancy

� = 11(31̄1)[011] Vacancy Vacancy

� = 7(23̄1)[111] Vacancy Vacancy

� = 13(34̄1)[111] Vacancy Vacancy

each GB. The dominant diffusion mechanisms are
listed in Table 6 and the relevant Arrhenius plots are
shown in Fig. 15. We notice that diffusion in the
� = 5(310)[001] GB is dominated by the interstitial
mechanism whereas diffusion in all other GBs is dom-
inated by vacancies. This result suggests that there is
no universal mechanism of GB diffusion and that the
latter can be dominated by either vacancies or intersti-
tials, depending on the GB structure. It is interesting
to notice that most of the previous work in this area
has been done on the � = 5(310)[001] GB which
has been considered as a “typical” high-angle GB.
Table 6 demonstrates that, ironically, this GB is more
an exception than a rule, at least as far as point defects
and diffusion are concerned. This GB has an extremely
high affinity for the interstitial formation in the center
of the capped trigonal prism (Fig. 3(b)) with very low
formation and migration energies of the interstitial (cf.
Table 3).

Another interesting observation is that diffusion par-
allel to the tilt axis can be faster or slower than diffusion
normal to the tilt axis, depending on the GB structure
(Table 6). This is contrary to the common view that dif-
fusion parallel to the tilt axis should always be faster.
The latter relation should indeed be expected, and was
observed experimentally [32], for low-angle GBs com-
posed of an array of dislocations parallel to the tilt axis.
As far as high-angle GBs are concerned, “special” low-
� GBs have a less anisotropic structure and the tilt axis
does not have to be the preferred diffusion direction in
all cases. It is this type of GBs that were studied in this
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work. On the other hand, so-called “vicinal” GBs with
tilt angles slightly away from a “special” orientation
contain an array of misfit dislocations running parallel
to the tilt axis in the otherwise “special” structure [4].
The misfit dislocations can enhance diffusion parallel
to the tilt axis and thereby alter the diffusion anisotropy
in favor of that direction. Even if diffusion normal to
the tilt axis is faster in the “special” structure, as it is for
example in the � = 7 and � = 13 GBs, deviations of
the tilt angle from the ideal orientation may reverse the
sense of the anisotropy and make diffusion parallel to
the tilt axis faster. This was likely to be the case in the
recent experimental measurements on [001]-oriented
Ag bicrystals in which diffusion parallel to the tilt axis
was found to be faster than in the normal direction
for all tilt angles studied, including angles close (but
presumably not identical) to the ideal � = 5(310) and
� = 5(210) GBs [33].

Figure 16 shows the spectra of partial activation en-
ergies of vacancy and interstitial jumps included in the
KMC simulations. The effective activation energies
deduced by fitting the respective Arrhenius plots are
also shown for comparison. The comparison does not
support the view, expressed often in the past, that GB
diffusion is dominated by the easiest jumps, i.e., defect
jumps with the lowest partial activation energy. Gener-
ally, GB diffusion depends on many different jumps in
a complex way as well as on the GB structure through
jump-correlation effects, which are more significant
in GBs than they are in a regular lattice [2, 3, 8, 34,
35]. The easiest jumps alone may be unable to sup-
port a macroscopic diffusion flux if they do not form
a two-dimensional3 network penetrating through the
GB structure, which is often the case in GBs. A careful
examination of the six GBs studied in this work shows
that there is always a jump, or a group of jumps with
nearby partial activation energies, which provide a two-
dimensional network that controls the rate of the over-
all diffusion process. This explains why the Arrhenius
law is followed by GB diffusion so accurately. How-
ever, such “leading” jumps do not always coincide with
the easiest jumps and often have partial activation en-
ergies lying deep inside the spectrum (Fig. 16). This
fact points to the importance of considering a large set
of defect jumps for a reliable calculation of diffusion
coefficients.

Years ago, Borisov et al. [36] and Gupta [37] sug-
gested, based on general thermodynamic considera-
tions, a linear correlation between the activation en-
ergy of GB diffusion and the GB energy, with lower
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Figure 16. Partial activation energies of defect jumps included in
KMC simulations. (a) vacancy mechanism; (b) interstitial mecha-
nisms. Dashed lines indicate effective activation energies of diffu-
sion parallel (‖) and perpendicular (⊥) to the tilt axis calculated by
fitting Eq. (10) to KMC results.

activation energies in high-energy GBs. While experi-
mental data generally follow this rule, it has never been
examined by atomic-level calculations. In Fig. 17, the
activation energies of diffusion in the six GBs calcu-
lated in this work are plotted against the GB energy. De-
spite the significant scatter of the points, the lowest ac-
tivation energy in each GB seems to follow the Borisov
rule. The anisotropy of the activation energy makes a
linear correlation somewhat fuzzy, but the trend for
high-energy GBs to have lower activation energies ap-
pears to be persistent. Further calculations are needed
for a more rigorous test of the linear relation.

In conclusion, our calculations for six symmetrical
tilt GBs in Cu confirm that the basic results obtained
by Sørensen et al. [8] for � = 5 GBs are general and
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Figure 17. The activation energy of diffusion parallel (‖) and per-
pendicular (⊥) to the tilt axis in Cu grain boundaries. The activation
energy of diffusion in the perfect lattice is shown for comparison. The
dashed line is a linear extrapolation through the minimum activation
energies in different grain boundaries.

hold for other GBs as well. For the � = 5 GBs, our
calculations with a different embedded-atom potential
verify the main results of Ref. [8] despite slight differ-
ences in numerical values of the diffusion constants.
GBs are able to support localized vacancies and in-
terstitials at certain sites, but there are sites that do
not support a stable vacancy. Furthermore, vacancies
and interstitials can delocalize in the GB structure by
inducing strong atomic displacements extending over
a large area. A similar effect was earlier reported by
Vitek et al. [38] who observed local structural trans-
formations induced by vacancies at selected GB sites
in fcc and bcc metals. Interstitials can also form split
dumbbell configurations as they do in the lattice. All
these effects appear to be general and are expected to be
present in many GBs as well as in core regions of other
extended defects. In contrast to a regular lattice where
interstitial atoms have extremely low concentrations
and do not normally contribute to self-diffusion, both
vacancies and interstitials are equally important in GBs
and can both contribute to GB diffusion. Vacancies can
move in GBs by single-atom exchanges or by “long”
jumps involving a collective displacement of several
atoms. Interstitials can move by direct jumps between
interstitial positions or by collective processes involv-
ing 2–4 atoms. The dominant diffusion mechanism can
be different in different GBs. GB diffusion coefficients
follow the Arrhenius law with an effective activation
energy that often correlates with the partial activation
energy of a certain defect jump or a group of jumps
with close activation energies, but not necessarily with
the easiest jump. Diffusion in tilt GBs is anisotropic,
but diffusion parallel to the tilt axis can be faster or
slower than diffusion normal to the tilt axis, depend-

ing on the GB structure. The activation energy of GB
diffusion in the fastest direction tends to decrease with
the GB energy.
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Notes

1. This is only true in the classical harmonic approximation. Quan-
tum effects and lattice anharmonicity may lead to temperature-
dependent Sα

f values.
2. Because the block sizes in directions parallel to the GB are fixed

at their perfect-lattice values, the interfacial tension of the GB
creates a residual pressure in the block that cannot be eliminated
by relaxation. This explains why p0 �= 0 for a GB block with or
without a point defect.

3. One-dimensional easy-jump channels, if isolated from one an-
other, are not efficient for diffusion because the jump correlation
factor for defect-mediated diffusion in one-dimensional systems
is zero [34, 35]. The direct interstitial mechanism is the only ex-
ception to this rule.
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