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Abstract

A framework for investigating size-dependent small-scale plasticity phenomena and related

material instabilities at various length scales ranging from the nano-microscale to the meso-
scale is presented. The model is based on fundamental physical laws that govern dislocation
motion and their interaction with various defects and interfaces. Particularly, the multi-scale
framework merges two scales, the nano-microscale where plasticity is determined by explicit

three-dimensional dislocation dynamics analysis providing the material length-scale, and the
continuum scale where energy transport is based on basic continuum mechanics laws. The
result is a hybrid elasto-viscoplastic simulation model coupling discrete dislocation dynamics

with finite element analyses. With this hybrid approach, one can address complex size-
dependent problems including, dislocation boundaries, dislocations in heterogeneous struc-
tures, dislocation interaction with interfaces and associated shape changes and lattice rota-

tions, as well as deformation in nano-structured materials, localized deformation and shear
bands. # 2002 Elsevier Science Ltd. All rights reserved.

Keywords: A. Dislocations, dynamics; B. Elastic-viscoplastic materials

1. Introduction

Plastic deformation in metals is a very complex phenomenon originating from
highly nonlinear dynamical processes associated with microscopic defects, such as
dislocations, voids, and microcracks. While dislocations and their mutual interac-
tions determine the material strength in the absence of other internal defects, they
tend to self-organize in the form of patterns, resulting into a heterogeneous field of
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deformation at the microscale although the overall macroscopic field is thought to
be homogeneous. Although there has been a tremendous effort to understand work
hardening/strain softening and associated material instability phenomena, this
research area is still in a parlous state, and rife with controversy. To some extent,
this is due to the difficulty of carrying out truly definitive experiments on critical
aspects of the evolution of the dislocation structure. But more important have been
the immense theoretical difficulties of dealing with large numbers of dislocations and
defects. Nonetheless, it is well understood that plastic deformation and strengthen-
ing in metals can be related to a number of heterogeneous patterns, such as dis-
location cells, slip bands, microshear bands, persistent slip bands and dislocation
tangles, which are critical for material properties (Essmann, 1964; Essmann and
Mughrabi, 1979; Kuhlmann-Wilsdorf, 1998). For example, localized deformation,
shear banding and dislocation cell structures play a significant role in determining
the flow properties of heterogeneous materials, such as MMC, even at small mac-
roscopic strains (Kamat and Hirth, 1990; Rhee et al., 1994). Dislocation pile-ups at
the particle–matrix interface contribute to increased strength and changes in the
interfacial properties, and the critical bowing out of a large number of dislocations
could also explain shear banding leading to interfacial damage and debonding.
Adiabatic shear banding has also been viewed as a leading mechanism in the for-
mation of microcracks (Zbib and Jubran, 1992; Lambros and Rosakis, 1995).
The main difficulty in modeling the aforementioned phenomena lies in the fact

that the length scale of these phenomena is not large enough to treat them within the
realm of classical continuum mechanics framework. At the same time the length
scale is not small enough to view these phenomena within the mechanics of a few
dislocations, but rather through a thorough analysis of dislocation dynamics. For
example, Kuhlmann-Wilsdorf (1998) proposed that the dislocation structures can be
understood as a progression of low energy thermodynamic states with something
like a conventional phase transition taking place between carpet structures and 3D
cell structures at the end of Stage II (Kubin, 1993). In this same spirit, Holt (1970)
proposed that dislocation structure evolution was akin to spinodal decompostion.
Although his model was unphysical in important ways, his introduction of local
densities of diffusing dislocation populations was adopted in later models. In parti-
cular, Aifantis (1987, 1988, 1995) and Walgraef and Schiller (1987) developed a
model of dislocation patterning for slip bands and persistent slip bands. In this theory,
third order reaction terms are essential for the development of ordering, and recent
work of Kratochvil et al. (1997) has suggested that these terms arise when a mobile
dislocation interacts with a dislocation dipole. But these reaction-diffusion schemes
are quite simple, and do not yet address realistic 3D dislocation configurations.
The phenomena mentioned above, among others, illustrate the fact that defor-

mation patterns, deformation induced hardening and structurally induced hardening
are complex phenomena involving nonlinear interaction among dislocations and
interaction of dislocations with interfaces. This further illuminates the fact that not
the same deformation and strengthening mechanisms can explain these and many
other phenomena. The length scale at which the deformation is taking place, the
mode of deformation and structure size are important factors that determine the
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corresponding dislocation mechanism. In this paper we present a framework for
addressing small-scale plasticity phenomena based on discrete dislocation dynamics
and continuum mechanics. In this framework, the plastic response of the material is
determined by explicit evaluation of the evolution of dislocation population. The
resulting hybrid model allows for rigorous investigation of deformation at the micro
scale. In Section 2 we outline the general continuum mechanics framework for elasto-
viscoplastic behavior with thermal effects. In Section 3, we present the discrete dis-
location dynamics model and outline new techniques we developed recently to advance
a previous model by Zbib and co-workers. In Section 4, the multiscale model is devel-
oped coupling the DD with continuum finite element analysis. Finally, in Section 5 a
set of examples are presented in this paper including, deformation and lattice rotation
induced by fundamental dislocation wall structures (pure tilt and pure twist walls),
simulation of micro-shear bands, simulation of dislocation structure during the
nanoindentation test, effect of boundary conditions on predicted stress–strain curves.

2. Elasto-viscoplastic continuum framework

Within the continuum mechanics framework, the governing equations of the
material response are developed based on a representative volume element (RVE)
over which the deformation field is assumed to be homogeneous. In this approach,
the effect of internal defects, such as dislocations, voids, microcracks, etc., on
material behavior and the manner they influence material properties is modeled
through a set of internal variables and corresponding phenomenological evolution
equations. Generally, the material response is measured in terms the macroscopic
strain rate tensor "

:
and its relation to the stress tensor S. We consider a computa-

tional cell of size in the order of a few tens of micrometers containing many dis-
locations and point defects (microcracks, stacking fault tetrahedra, Frank sessile
loops, rigid particles, etc.) as illustrated in Fig. 1 (Diaz de la Rubia et al., 2000). On
the macroscale level, it is assumed that the material obeys the basic laws of con-
tinuum mechanics, i.e. the linear momentum balance:

div S ¼ � v
:

ð1Þ

and the energy equation

� cvT
:
¼ kr2Tþ S:"

: p ð2Þ

where v ¼ u
:
is the particle velocity, u, �, cv and k are the displacement vector field,

mass density, specific heat and thermal conductivity respectively. For elasto-visco-
plastic behavior, the strain rate tensor "

:
is decomposed into an elastic part "

: eand a
plastic part "

: p such that

"
:
¼ "

: e þ "
: p; "

:
¼

1

2
rv þ rvT
� �

ð3Þ
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For most metals the elastic response is linear and can be expressed by the incre-
mental form of Hooke’s law for large deformation and material rotation such that

S
o

¼ Ce½ �"
: e; S

o

¼ S
:
�! S þ S !; ! ¼W �Wp ð4Þ

where Ce is a fourth order tensor, ! is the spin of the substructure and is given as
the difference between the material spin W and plastic spin Wp. Combining (2) with
(3) leads to

S
o

¼ Ce½ � "
:
� "

: p� �
ð5Þ

Fig. 1. Typical simulation cell containing (a) dislocations and (b) point defects.
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The main challenge in the plasticity theory is the development of proper con-
stitutive laws for "

: p and Wp (Voyadjis and Mohammad, 1991; McDowell, 1992;
Khan and Chang, 1996; Le and Stumpf, 1996; Shizawa and Zbib, 1999; Houslby
and Puzrin, 2000; Khan and Liang, 2000; Kalidindi, 2001; Scheidler and Wright,
2001). More importantly, these laws should be based on the underlying micro-
structure, mainly dislocations. Nonetheless, this task is perhaps formidable, espe-
cially when bridging two scales orders of magnitude apart, i.e. the continuum scale
and the discrete dislocation scale. Here we emphasize that the ‘‘assumed’’ con-
stitutive nature of "

:p and flow stress and their dependence upon internal variables
and gradients of internal variables is very critical, since they dictate, among other
things, the length scale of the problem and the phenomena that can be predicted by
the model. In this respect, it goes without question that the most rigorous and phy-
sically based approach of computing the plastic strain and strain hardening in
metals, with all relevant length scales, is through explicit evaluation of interaction,
motion and evolution of all individual discrete dislocations and all relevant other
defects in the crystal as described in the next section.

3. Description of the three-dimensional dislocation dynamics (DD)

The early discrete dislocation models were two-dimensional and consisted of per-
iodic cells each with dislocations of Infinite length (Lepinoux and Kubin, 1987;
Ghoniem and Amodeo, 1988; Groma and Pawley, 1993; Wang and LeSar, 1995).
Later, a three-dimensional dislocation model was developed by Kubin et al. (1990)
and Canova et al. (1993). In this model, dislocations are discretized into pure screw
and edge segments of length restricted to be integer multiples of a minimum size.
This scheme thus excludes mixed dislocations, requiring fine segmentation and pro-
ducing an extremely large number of sub-segments during the simulations. These
issues have been addressed in detail at by the recent work of Zbib et al. (1996, 1998),
Hirth et al. (1996), and Rhee et al. (1998). In that work, arbitrarily curved disloca-
tions are decomposed into piecewise continuous arrays of mixed straight segments
and long-range interactions are treated using super-dislocations. The 3D discrete
dislocation model (micr3d) developed at WSU simulates the dynamical behavior of
large numbers of dislocations of arbitrary shapes, and interaction among groups of
3D dislocations. In the model, a crystal plasticity representation of a three dimen-
sional crystal is considered containing a number of dislocation loops and lines of
arbitrary shapes lying on primary and secondary slip systems as depicted in Fig. 1a
and b. Dislocations in a fcc continuum are restricted to the {111}<011> slip sys-
tems and, hence glissile dislocation lines can only lie on {111} planes, with parallel
planes being separated by the critical annihilation distance. For bcc single crystals
the {110}<111> and {112}<111> are the most closed packed slip systems and
both are active at low temperatures. The {123}<111> slip systems are less closed
packed and become active at high temperatures and will be included into the model
at a later stage. The analysis is based on explicit evaluation of dislocation motion
and their interaction with other defects and particles.
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3.1. Computation of the dislocation stress field

The method developed by Zbib and co-workers for the computation of the dis-
location stress field and dislocation-dislocation interaction is modified in this work
to allow for fine resolution of segment length and to ensure numerical convergence
as will be explained below.
Curved dislocations interact among themselves and with any applied stresses. In

an exact treatment, the stress induced by an arbitrary dislocation loop at an arbi-
trary field point P (Fig. 2) can be computed by the Peach-Koehler equation given by
the following line integral (Hirth and Lothe, 1982):

��� pð Þ ¼ �
G

8	

þ
C

bm 2im�
@

@x0i
r02R dx0� �

G

8	

þ
C

bm

2im�
@

@x0i
r02R dx0� �

G

4	 1� �ð Þ

þ
C

bm

2imk
@3R

@x0i@x
0
�@x

0
�

� ���
@

@x0i
r02R

 !
dx0k ð6Þ

where bi is the (ith component of the) Burgers vector, 2 is the permutation symbol,
G is the shear modulus, and � is Poisson’s ratio. The rest of the symbols are defined

Fig. 2. Meshing: nodes and collocation points on dislocation loops and curves.

1138 H.M. Zbib, T. Diaz de la Rubia / International Journal of Plasticity 18 (2002) 1133–1163



in Fig. 2. This integral can be evaluated numerically in a number of various methods.
One method is to mesh the curve into set of nodal points as shown in the figure and
perform piecewise integration so that

��� pð Þ ¼
X

allLoops

Xn�1

j¼1

(
�

G

8	

ðjþ1

j

bm 2im�
@

@x0i
r02R dx0� �

G

8	

ðjþ1

j

bm

2im�
@

@x0i
r02R dx0� �

G

4	 1� �ð Þ

ðjþ1

j

bm

2imk
@3R

@x0i@x
0
�@x

0
�

� ���
@

@x0i
r02R

 !
dx0k

)
ð7Þ

where n is the total number of nodal points in a given loop or curve. Similar con-
tributions arise from all loops as indicated by the first summation. The integral over
the interval j to j+1 can be evaluated explicitly using a straight segment approx-
imation. The result is given in Hirth and Lothe (1982) and is indicated here as
�Dj;jþ1 ¼ �Djþ1 � �Dj . Then Eq. (7) reduces to the approximate form

� pð Þ ¼
XN
j¼1

�Dj;jþ1 ð8Þ

where N is the total number of nodes from all loops and curves. This approximation
can be very accurate even for a coarse mesh as can be deduced from Fig. 3. In the
figure we compare the distributions of one of the stress components corresponding
to a prismatic loop. The exact solution was obtained by solving Eq. (6) by Khraishi
et al. (2000).

3.2. Self-force and Peach–Koehler (PK) force at dislocation nodes and segments

In order to compute the dynamics of the dislocation curve one needs to evaluate
the local stress distribution and, therefore, the driving force and velocity distribution
along the entire curve as depicted in Fig. 2. Numerically, this requires selecting a set
of collocation points on the curve which are chosen to coincide with the dislocation
nodes used to mesh the curve. So when the field point p is a collocation point, say
point ‘‘i’’ in loop ‘‘2’’ as shown in Fig. 2, the stress at that point is determined from
all other loops and loop ‘‘2’’ itself according to equation (8) except for the con-
tribution from the portion bounded by the nodes (i�1,i+1) of curve ‘‘2’’ where node
‘‘i’’ is located. For this portion a special treatment is required due to the singular
character of the stress field when R !0 as can be deduced from Eq. (6). An
approximate solution for this contribution in addition to the core energy has been
developed by Zbib and co-workers by approximating the curve bounded by i�1 and
i+1 as a simple dislocation bend, yielding a closed form analytical solution for the
self-force Fi-self at node ‘‘i’’. This approximation works well in terms of accuracy and
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numerical convergence for segment length as small as 20b. For finer segments,
however, one can use a more accurate approximation by fitting the curve bounded
by i�1 and i+1 to a simple circular arc the solution of which is given by Scatter-
good and Bacon (1975). Another treatment is given by Gavazza and Barnett (1976)
and used in the recent work of Ghoniem and Sun (1999). Thus, using Eq. (8), the
Peach–Kohler force computed directly on node ‘‘i’’ is given by

Fi ¼
XN�1

j¼1

�Dj;jþ1 pð Þ þ �ap

 �

:bi � �i þ Fi�self ð9Þ

where �a(p) is any other externally applied stress plus internal friction (if any) and
stress induced by other defects such as stacking fault tetrahedra (SFT’s) and Franks
sessile loops (for irradiation hardening problems), interaction with rigid particles
(for metal matrix composites problems), and interaction with internal and external

Fig. 3. The stress distribution of a prismatic loop. Comparison between the exact analytical solution

(from Khraishi et al., 2000) and approximate solution for various segment size.
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free surfaces (for micro-cracks problems). In Eq. (9), bi is the Burgers vector, and �i
is the line sense. With this treatment, the dislocation curves are approximated as
continuous arrays of mixed segments as illustrated in Fig. 2 but when computing the
local stress (self force) the curve is smoothed into a simple circular arc, permitting fine
resolutions with accurate results and convergence as discussed in the next section.
The direct computation of the PK force at the nodes as discussed above requires

the use of very fine mesh, especially when dealing with problems involving disloca-
tion-defect interaction. As a general rule the dislocation segment size (distance
between two adjacent nodes) must be comparable to the size of the defect or the
nearby dislocation segment, otherwise the computation of the interaction may not
be accurate. To remedy this problem, the PK force is integrated over the entire seg-
ment length. Namely, consider a dislocation segment bounded by nodes j and j+1,
then the PK force on the segment is integrated over the entire segment length L such
that

Fj;jþ1 ¼
XN�1

i¼1

1

L

ð
L

�Di;iþ1 pð Þ þ �a pð Þ
� 


:bj;jþ1 � �j;jþ1dlþ Fj;jþ1self ð10Þ

where p is a field point on the dislocation segment j, j+1 and Fself is that corre-
sponding to the local interaction between the segment adjacent to j,j+1 and are
treated in the same manner discussed above. Numerically, this leads to integration
over a number of n gauss points and (10) becomes

Fj;jþ1 ¼
XN�1

i¼1

1

n

Xn
k¼1

�Di;iþ1 pkð Þ þ �a pkð Þ:bj:jþ1 � �j:jþ1 þ Fj;jþ1self ð11Þ

where pk is the gauss point k. Once the segment PK is computed it is distributed
equally to its nodes j and j+1. This is analogous to the load distribution method
used in the finite element analysis.

3.3. Equations of motion

In the dislocation dynamics, all N dislocation nodes (3�N degrees of freedom)
move simultaneously in the glide direction over a characteristic time corresponding
to the least time increment required for an interaction to take place, such as two
dislocations to annihilate or form a junction. The result is a set of nonlinear differ-
ential equations governing the motion of the dislocation segments. The governing
equation of glide motion for each dislocation node is given by (Hirth et al., 1998)
which when combined with (11) leads to

m

i v
:
i þ

1

Mi T; pð Þ
v
:
i ¼ Figlide-component ð12Þ

Here m* is the effective mass per unit dislocation, M is the mobility which could
depend on both temperature T and pressure p, and it could also be a fuction of the
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angle between the Burgers vector and the dislocation line sense, especially at low
temperatures. For example, in bcc single crystals, at low temperatures a pure screw
dislocation has a rather complex three-dimensional core structure, resulting in a
high Pierels stress which is overcome by stress-assisted thermal activation (Hirth and
Lothe, 1982). This leads to a relatively low mobility for screw dislocations while the
mobility of mixed dislocations is very high (Urabe and Weertman, 1975). For dis-
locations moving at high speeds Hirth et al. (1998) derived the following expressions
for the effective mass m* per unit dislocation length

m

s ¼

W0

v2
�
�1 þ 
�3
� 


ð13Þ

for screw dislocation and for the edge dislocation

m

e ¼

W0C
2

v4
�16
l � 40
�1

l þ 8
�3
l þ 14
 þ 50
�1 � 22
�3 þ 6
�5

� �
ð14Þ

where 
l ¼ 1� v2=C 2
l

� 
1=2
, 
 ¼ 1� v2=C2

� 
1=2
, Cl is the longitudinal sound velocity

and C is the transverse sound velocity, and W0 is the rest energy for the screw. In
treatments of acceleration, an impulse load is assumed to be applied to the disloca-
tion so that the core accelerates to a new velocity after a brief relaxation time (b/C)
where b is the length of the Burgers vector. Through a period equal to the relaxation
time to achieve a new steady state, the long-range strain field is moving at a different
velocity than the core. Thus, an oscillatory, quasi-steady state is possible with the
long-range strain field oscillating about the core position. However, Beltz et al.
(1968) showed that the oscillations can be described in terms of Eq. (10), with the
associated energy radiation contributing M. Similarly, the possibility of an instabil-
ity consisting of the faceting of the line into a non-straight shape can be treated in
terms of the Lagrangian L Hirth et al. (1998). For low velocities (less than one tenth
the transverse sound velocity) the inertia term is very small and can be neglected.
The set of Eqs. (12) are coupled and highly nonlinear. They are solved simulta-

neously using an implicit scheme as described later which turns out to be stable
provided that the integration time step is small enough, which is the case here as
dictated by the short-range interaction. Then each dislocation node is advanced to a
new position over an increment of time. In the new configuration, the spacing
between any two adjacent nodes may become larger than a pre-assigned maximum
allowable length (e.g. 5�50b, depending on the nature and size of the problem) in
which case a new node is assigned at mid-point of the two nodes.
In passing we point out that the above treatment is different than the one origin-

ally developed by Zbib et al. (1996; 1998) where the PK force and velocity vector
were evaluated at the center of the segment ‘‘j�j+1’’ then the nodal values, say at
node ‘‘j’’ were taken as the average of those corresponding to the adjacent segments.
The current treatment makes better approximation of the local curvature for the
self-force as well as integrating the PK force over the entire length of the curve,
ensuring numerical accuracy and convergence.
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3.4. Short-range reactions and cross-slip

Short-range interactions considered in the model include annihilation, and for-
mation of dipoles, jogs and junctions. A short-range interaction occurs when the
distance between two dislocations becomes comparable to the size of the core where
the elasticity field is no longer valid. With the meshing described above, mixed dis-
locations of arbitrary characters can be easily introduced. Therefore, junctions are
explicitly formed during the simulations. A complete list of the short-range interac-
tion rules for dislocation dynamics is given by Rhee et al. (1998).
Cross-slip is an important mechanism in recovery processes in both fcc and bcc

metals. Screw dislocations may cross-slip to reduce internal stresses and to circum-
vent internal obstacles, consequently, providing a mechanism for the production of
Frank–Read sources through double cross-slip. This process is a thermally activated
process and, therefore, is more prolific at high temperatures. Therefore, cross-slip is
determined numerically using a Monte-Carlo type simulation where the probability
of a segment to jump into a secondary plane is determined by the probability P,
accounting for segment length and activation energy to cross-slip (Rhee et al., 1998),
which is given by

P ¼ � �1 � texp �
�W
 � �A

kT

� �
; �1 ¼

Ct	

L
ð15Þ

where �1 is the fundamental frequency of a vibrating dislocation segment of length
L, Ct is the transverse sound velocity, �t is the time increment, � is a numerical
parameter controlling the frequency of cross slip, �W
 is the activation energy to
form a kink configuration as discussed by Rhee et al. (1998) (not to be confused with
the double kink activation energy) plus constriction energy, � is the resolved shear
stress, A is the area swept by the dislocation segment, k is the Boltzmann constant, T
is the absolute temperature.

3.5. Dislocation-induced plastic distortion

The motion of each dislocation segment contributes to the overall macroscopic
plastic strain "

: p and plastic spin Wp via the relations:

"
: p ¼

XN
i¼1

livgi
2V

ni � bi þ bi � nið Þ; ð16Þ1

Wp ¼
XN
i¼1

livgi
2V

ni � bi � bi � nið Þ; ð16Þ2

n
:
¼ !n ð16Þ3

where li is the segment length, ni is a unit normal to the slip plane, vgi is the magni-
tude of the glide velocity, and N is the total number of segments. In (16) ‘‘V’’ is the
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volume of the RVE which is the finite element in the FEA for the finite domain
problems. When the simulation cell is a representative cell in an infinite domain (and
only DD analysis is performed) ‘‘V’’ is the volume of the entire cell. Furthermore,
for the discrete dislocation system, one can also calculate the dislocation density
tensor �

� ¼
X li

V
bi � �i ð17Þ

This quantity provides a direct measure for the net Burgers vector that gives rise
to strain gradient relief (bending of crystal). The above system of equations provides
the most rigorous connection between the dislocation motion (the fundamental
mechanism of plastic deformation) and the macroscopic plastic strain, with its
dependence on strength and applied stress being explicitly embedded in the calcula-
tion of the velocity of each dislocation. Moreover, nonlocal effects are explicitly
included into the calculation through long-range interactions.

4. The multi-scale boundary value problem

For infinite domain problems, the computational cell as a whole is considered as a
representative volume element. In the dislocation dynamics analysis we employ
either reflection boundary conditions as described by Zbib et al. (1998) which
ensures continuity of dislocation curves, or periodic boundary conditions as given
recently by Bulatov et al. (2000) which ensures conservation of dislocation flux
across boundaries as well as continuity. However, for finite domain problems and
those involving internal surfaces and heterogeneous media, these methods are no
longer valid and a more rigorous treatment of boundary conditions is required. This
issue is treated below.

4.1. The superposition principle—homogenous materials

4.1.1. Interaction with external free surfaces
The solution for the stress field of a dislocation segment [Eq. (6)] is known for the

case of infinite domain and homogeneous materials, which is used in DD codes.
Therefore, the principle of superposition [also used by Van der Giessen and Nee-
dleman (1995) and Needleman (2000) for the 2D case, and was extended to 3D by
Fivel et al. (1998) and Yasin et al. (2001)] is employed to correct for the actual
boundary conditions, for both finite domain and homogenous materials. The
method assumes two solutions as depicted in Fig. 3. Assuming that dislocation seg-
ments, dislocations loops and any other internal defects with self induced stress (e.g.
cracks can be modeled as pile-ups of dislocation Demir and Zbib, in press) are
situated in a finite domain V bounded by @V and subjected to arbitrary external
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traction and constraints as shown in Fig. 4. Then the stress field is given by the sum
of two solutions:

S ¼ S1 þ S


u ¼ u1 þ u


" ¼ "1 þ "

ð18Þ

Fig. 4. Coupled DD–FEA boundary value problem using the superposition principle.
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where S1, "1 and u1 are the stress field, strain field and displacement fields,
respectively, caused by the internal defects as if they were in an infinite domain,
whereas S
, "
 and u
 are the fields corresponding to the auxiliary problem satisfy-
ing the following boundary conditions

t ¼ ta � t1 on @V
u ¼ ua on part of @V

ð19Þ

where ta is the externally applied traction, and t1 is the traction induced on @V by
the defects (dislocations) in the infinite domain problem. The traction -t1 on @V
results into an image stress which is superimposed onto the dislocations segments
and, thus, accounting for surface-dislocation interaction.

4.1.2. Internal surfaces
The treatment discussed above considers interaction between dislocations and

external surfaces, as well as internal free surfaces such as voids. Internal surfaces
such as micro-cracks and rigid surfaces around fibers, say, are treated within the
dislocation theory framework, whereby each surface is modeled as a pile- up of
infinitesimal dislocation loops. Hence defects of these types are all represented as
dislocation segments and loops, and their interaction with external free surfaces
follows the method discussed above. This subject is discussed in a separate article
(Kharishi et al., 2001).

4.1.3. Dislocation stress as an internal variable
The long-range stress field arising from the dislocations is computationally expen-

sive (N2 problem, N is the number of dislocation segments). A numerical technique
method termed the superdislocation method and based on the multipolar expansion
(Wang and LeSar, 1995) method has been outlined by Zbib et al. (1998) which reduces
the order of the problem to NlogN with high accuracy. In this method dislocations
far away from the point of interest are grouped together into a set of equivalent
monopoles and dipoles. Here we present another approach more consistent with the
finite element framework which captures both the dislocation-self stress and its
distortion. Consider a RVE, then the stress field induced by the dislocations con-
tained within the RVE can be treated as an internal stress SD (homogenized over the
finite element with enough gauss points) as illustrated in Fig. 5. Moreover,
the effective total stress within the RVE is the sum of the stress by all external
agencies S and the internal stress SD. Hence, the constitutive equation in total form
becomes:

S þ SD ¼ Ce½ � " � "p½ �; SD ¼< �D >¼
1

Velement

ð
element

�D xð Þdv ð20Þ

Since the dislocation stress field varies as 1/r, careful approximation of SD over the
RVE is important.
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4.1.4. The finite element formulation—solid mechanics
Without loss of generality, Eqs. (3) and (5) can be re-written in total form as in

(17) (as opposed to the rate form) and the system of equations can be cast into a
standard finite element framework (the formulation for the rate-form follows along
the same lines but involves additional terms and will be left for future treatment)
which has the following general form.

M½ � U€
n o

þ C½ � U
:n o

þ K½ � Uf g ¼ faf g þ fB
� �

þ f1f g þ fP
� �

ð21Þ

where M½ � ¼
Ð
V� N½ �

T N½ �dv is the mass matrix, K½ � ¼
Ð
V B½ �

T Ce½ � B½ �dv is the stiffness
matrix, faf g ¼

Ð
s
ta N½ �ds is the applied force vector, f1f g ¼

Ð
s
t1 N½ �ds is the force

vector from dislocation image stresses, fB
� �

¼
Ð
v
SD B½ �dv is the body force vector from

dislocations long-range interaction and fP
� �

¼
Ð
v
Ce½ �"P B½ �dv is force vector from

plastic strain caused by dislocations, with [N] being the shape function vector,
[B]=grad[N], {u}=[N]{U}, " ¼ B½ � Uf g, and [C] is the dampingmatrix. Dislocations are
sorted out in each element and they contribute to the plastic strain based on Eq. (16).
The numerical treatment of the dislocation long-range stress described above,

using the internal stress concept (SD), results into the body-force vector {fB}. Thus,
the resulting stress field in each element includes stress from all external agencies and
dislocations. And therefore, the driving force on each dislocation is readily evaluated
from this stress field. This approximation works well for far apart dislocation-disloca-
tion interaction (dislocations not residing in the same element). The interaction of
dislocations belonging to the same element must be computed one-to-one (M2,
M=number of dislocation segments in a given element). For example, consider
dislocation segment j�j+1 in an element containing M dislocations, then Eq. (11) is
replaced by

Fj;jþ1 ¼
XM�1

i¼1

1

n

Xn
k¼1

�Di;iþ1 pkð Þ þ �a pkð Þ þ S � SD:bj:jþ1 � �j:jþ1 þ Fj;jþ1self ð22Þ

Fig. 5. Representative volume element: (a) inhomogeneous containing defects, (b) homogenous with an

equivalent internal stress (eigenstress).
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with S being the total stress in the element computed from the FEA described above
and SD is the homogeneous internal stress from dislocations within the element.

4.1.5. The finite element formulation—heat transfer
The energy Eq. (2) is also solved using the finite element method leading to the

standard form:

CT½ � T
:n o

þ KT½ � Tf g ¼ fTf g ð23Þ

where CT½ � ¼
Ð
V�c N½ �

T N½ �dv is the damping matrix arising from the term on the
right-hand side of equation (2), KT½ � ¼

Ð
Vk B½ �

T B½ �dv is the stiffness matrix arising
from the heat conduction term and fTf g ¼

Ð
S:"

: p N½ �dv is the load vector arising from
the plastic energy term.

4.1.6. Numerical solution—explicit integration
The multiscale model described above is implemented into a numerical code with

variety of options depending on the loading conditions. Full dynamic analysis (DD
and FEA) or DD with quasi-static FEA [by simply dropping the first two terms in
(21)] can be performed.
The dislocation equation of motion (12) is solved using an implicit algorithm by

evaluating the equation at time tþ �t along with a backward integration scheme,
yielding the recurrence equation

vtþ�t
i 1þ

�t

m
M

� �iþ�t

i

¼ vti þ
�t

m

Ftþ�t
i ð24Þ

It can be shown that this integration scheme is unconditionally stable for any time
step size. However, the DD time step is dictated by both the shortest flight distance
for short-range interactions, as well as the dynamic finite element model which is
solved using a forward explicit integration scheme. This scheme is chosen since the
time step in the DD analysis (for high strain rates) is of the same order of magnitude
of the time required for stable explicit FE dynamic analysis (FEA). In this analysis,
the critical time tc and the time step for both the DD and the FEA, which yield a
stable solution, are given by tc ¼

lc
Cl
; �t ¼ tc

20
where lc is the characteristic length

scale which is the shortest dimension in the finite element mesh.

4.1.7. Extension to inhomogeneous materials
The model described above for dislocations in homogenous materials has been

implemented into a finite element code. The model can be extended to the case of
dislocations in heterogeneous materials using the concept of superposition as follows.

4.1.7.1. Case 1: dislocations in one sub-domain. Suppose that domain V is divided
into two sub-domain V1 and V2 with domain V1 containing a set of dislocations.
The stress field induced by the dislocations and any externally applied stresses in
both domains can be constructed in terms of two solutions, i.
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S ¼ S11 þ S
;
" ¼ "11 þ "


ð25Þ

where S11 and "11 are the stress field and strain field, respectively, caused by the
dislocations (the infinite solution) with the entire domain V having the same mate-
rial properties of domain V1 (homogenous solution). Applying Hooke’s law for each
of the sub-domains, and using (21), we obtain the elastic constitutive equations for
each of the materials in each of the sub-domains as:

S
 ¼ Ce1
� �

"
; in V1

S
 ¼ Ce2
� �

"
 þ �
21; �
21 ¼ Ce2 � C
e
1

� �
"11; in V2

ð26Þ

where Ce1 and Ce2 are the elastic stiffness tensors in V1 and V2, respectively. The
boundary conditions are:

t ¼ ta � t11 on @V
u ¼ ua on part of @V

ð27Þ

where ta is the externally applied traction and t11 is the traction induced on all of @V
by the dislocations in V1 in the infinite-homogenous domain problem. The ‘‘eigen-
stress’’ �121 is due to the difference in material properties.

4.1.7.2. Case 2: dislocations in two sub-domains. Suppose that both sub-domains
contain dislocations (and/or other defect with self inducing stress fields). The
method of superposition described above can be extended by dividing the solution
into three parts such that

S ¼ S11 þ S12 þ S
;
" ¼ "11 þ "12 þ "


ð28Þ

where S11 and "11 are the stress and strain fields (infinite solution) from dislocations
in domain V1 with V being homogenous with properties of V1, and S

12 and "12 are
the stress and strain fields (infinite solution) from dislocations in domain V2 with V
being homogenous with properties ofV2. This leads to the elastic constitutive equations

S
 ¼ Ce1
� �

"
 þ �
12; �
12 ¼ Ce1 � C
e
2

� �
"12 in V1

S
 ¼ Ce2
� �

"
 þ �
21; �
21 ¼ Ce2 � C
e
1

� �
"11; in V2

ð29Þ

4.1.7.3. Case 3: generalization to N sub-domains. The method described above can
be easily extended to the case of heterogeneous materials with N sub-domains lead-
ing to the following relations.

S ¼
PN
i¼1

S1i þ S
;

" ¼
PN
i¼1

"1i þ "


ð30Þ
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with the constitutive equation

S
 ¼ Cei
� �

"
 � "pð Þ þ
XN
j¼1

�
ij; �
ij ¼ Cei � C
e
j

h i
"1j in Vi

i ¼ 1; 2; ::::N ð31Þ

The eigenstress �
ij, in turn, contributes to the body-force vector { fB } in Eq. (18).
The method is similar to that developed by Van der Giessen and Needleman (1995)
for the 2D case.
The three models described above, i.e. the DD model (micro3d), the solid

mechanics ( fea3d) and the heat transfer (ht3d), are coupled into a unified system as
summarized in Fig. 6 yielding a hybrid multiscale model of plasticity (msm3d) which
has the following features:

1. couples the continuum dynamics problem (elastic-plastic waves) with the dis-
location dynamics problem,

2. deals directly with all possible boundary, interfaces and dislocations in het-
erogeneous materials,

3. incorporates shape changes associated with dislocation motion and distortions,
4. incorporates directly dislocation long-ranges stresses, and
5. incorporates lattice distortion (elastic) that arises from dislocations.

Fig. 6. Summary of the multiscale model of plasticity.
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5. Application to various plasticity phenomena

In the simulations discussed below eight-node brick elements with eight integra-
tion points are used. The space is nondimensionalized by the magnitude of the
Burgers vector (b). The purpose of the simulations presented below is to illustrate
the capability of the msm3d model in capturing various plasticity phenomena at
nano-microscale as well as the mesoscale. It is emphasized that the full multiscale
dynamic model has already been implemented into a numerical code. Below we
present analyses for static loading conditions only where the inertia and damping
terms in Eq. (21) are dropped. Results for dynamic and thermal analyses for high
strain phenomena will be presented in other articles.

5.1. Dislocation mesh refinement and convergence

First we examine the effect of the dislocation mesh size on the numerical results.
As discussed above, the dislocation curve is meshed into a set of nodes, forming the
degrees of freedom, and segments. The smaller the spacing between two adjacent
nodes, or smaller segment length, the more degrees of freedom are introduced into
the simulations, increasing the computational effort. The mesh size, therefore,
should depend on the nature and size of the problem that one is investigating.
Nevertheless, the analysis should converge towards a stable configuration as the
mesh is refined. This is illustrated in this example where we consider a simple Frank–
Read (FR) source shown in Fig. 7. The material consider is a copper single crystal
with the following properties (relevant to both the continuum model and the DD
model) �=54.6 MPa, �=0.324, �m=8900 kg/m3, b=2.56x 10�10 m, and M=1000.0
Pa�1.s�1 (dislocation mobility). The source is subjected to a constant shear stress of

Fig. 7. Effect of dislocation mesh size (segment length). Pure edge dislocation, under an applied shear

stress of 13 MPa.
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13 MPa. The time step used in the numerical integration is maintained constant at
10�12 s. The integration was performed for various mesh sizes (segment length and
nodal spacing) ranging from 5b to 30b. The result for the cases of 5b, 10b and 30b is
shown in Fig. 7. The plots correspond to the position of the bow-out dislocation for
every 50 integration steps. It can be seen from the figure that the three mesh sizes
produces almost the same configurations. The CPU time for the case of 5b was
almost four times larger than that of the 30b case.

5.2. Dislocation self-stress and surface distortion

Next we show that the msm3d model is capable of capturing geometric distortions
and stress fields induced by the dislocations. Figs. 8 and 9 show the results for cases
of pure edge and pure screw dislocations respectively. In both cases the dislocation is
initially situated at the center of the specimen whose size is 400�400�800 b, with FE
element size of 40�40�80 b (10�10�25 nm). The bottom of the specimen is held
constant while the upper surface is subjected to a constant shear stress. The stress
contours shown in the figures are those induced by the dislocation. Also shown is
the macroscopic plastic strain produced by the dislocation motion. The geometric
distortion associated with this motion is also shown in the figure (the displacement is
magnified by a factor of 20), clearly showing the development of a ‘‘smoothed
ledge’’ at the surface, albeit its size is dictated by the FE mesh size. The displacement
and stress fields obtained by the msm3d model are as expected for the pure and edge
dislocations.

5.3. Dislocation-surface interaction: micro-bands

Next we consider a specimen with a single Frank-Read source subjected to a
constant axial stress of 100 MPa as shown in Fig. 10. The specimen
(10,000�10,000�20,000 b) is held constant at the bottom surface and loaded in the
z-direction. All other surfaces are free. Dislocations emit from the FR source (cor-
responding to the slip system ð11"1Þ½101"�) as depicted in Fig. 10b and annihilate at the
surfaces. Continuous emission of dislocations results into an increase in the local
plastic strain rate. Fig. 11 shows the results for the case of double-slip when two FR
sources are activated as can be deduced from the figure, corresponding to the slip
systems ð11"1Þ½101"�and ð1"1"1Þ½011�, forming microshear bands and resulting into
surface distortions.

5.4. Dislocation boundaries: bending and torsion of lattice structure

The msm3d model can be used to analyze complex dislocation boundaries and
structures to shed some lights on what controls hardening in metals at small scale.
This is rather important to understand when trying to model the material behavior
using macroscopic concepts such as those used in strain gradient theories. One of
those concepts is related to the so-called geometrically necessary boundaries
(Hughes et al., 2001). Two fundamental walls are examined, the pure tilt wall which
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is made up of pure edge dislocations and the pure twist wall which consists of two
sets of pure screw dislocation normal to each other (Hirth and Lothe, 1982) as can
be seen in Fig. 12. For both cases the dislocation spacing is 500 b, corresponding to
an angle of rotation of 0.12 degrees for the case of an infinite wall. However, here
the walls are finite and the external surfaces are free, thus the rotation they induce is
larger than that of the infinite wall. The presence of the dislocation walls causes the
crystal to bend in the case of the tilt wall and twist in the case of the twist boundary
as can be deduced from Fig. 12. In both cases the boundaries are assumed to be free
with the specimen fixed at the left x–y plane. It is pointed out that in the case of free
boundaries it is very important to account for image stresses as indicated by the

Fig. 8. Stress, plastic strain and distortion induced by a pure edge dislocation as predicted by the msm3d

model. Element size 40b.
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Fig. 9. Stress, plastic strain and distortion induced by a pure screw dislocation as predicted by the msm3d model. Element size 40b. Displacement is magnified

by a factor of 20.
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term f in Eq. (21). If this is not account for the result one gets is very much different
in terms of distortion as well as the stress fields. For finite walls the stress field has a
long range character as discussed by Hughes et al. (2001).

5.5. Effect of free surfaces and cell size on predicted yield stress

The effect of image stresses and the significance of dislocation-boundary interac-
tion on prediction of macroscopic properties is illustrated in this simulation. Here
we consider the case of a rectangular parallelepiped sample containing dislocation

Fig. 10. Simulation of dislocation emission from a Frank–Read source with free boundary condition

subjected to a constant axial stress of 100 MPa.

Fig. 11. Distribution of effective plastic strain rate for the case of double slip under constant stress with

free boundary condition, showing the development of steps at the surfaces. (Deformed configuration with

displacement magnified by a factor of 100.)
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Fig. 12. Lattice distortion caused by dislocation as predicted by the msm3d model. (a) Pure tilt wall of edge dislocations resulting into (b) bending (tilt

boundary), and (c) twist boundary of two families of pure screw dislocations resulting into pure twist (d). (Displacement is magnified by a factor of 20.)
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lines and/or loops and examine the effect of free surfaces on dislocation behavior.
The sample shown in Fig. 13a is divided into 10�10�10 eight-node elements. Trac-
tions at free surfaces, resulting from dislocations, are computed at four integration
points. The bottom surface of the sample is fixed, and the upper surface is moved at
controlled rate so that the average strain rate is maintained constant (1/s) (the dis-
placement of the upper surface is incremented in time). All other surfaces are

Fig. 13. Crystal size=20,000b (5.72 mm). (a) Dislocation sources start operating, as the resolved shear

stress is greater than the critical shear stress. Dislocation density increases with strain as more dislocation

segments are generated. All sources generate dislocations in the (111) plane (single slip). (b) Effect of the

free boundaries on the stress-strain curve for cubic Aluminum single crystal. The 0.05% yield is 75.9 MPa

when the free surface effect is applied, while it is 81.4 MPa when it is neglected.
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assumed to be free. The analysis is performed for an aluminum single crystal whose
properties are: �=26.6 MPa, �=0.334, �m=2800 kg/m3, b=2.862e�10 m, and
M=1000.0 Pa�1.s�1.
Forty Frank–Read sources were distributed randomly with random length ran-

ging from 4000b (1.144 mm) to 6000b (1.716 mm) in a cubic aluminum single crystal
(Fig. 13a) with side dimension of 20,000b (5.72 mm). The analysis was performed for
a wide range of cell size (20,000 to 50,000b) and strain rates, only a representative
sample is given here. All the dislocation sources were located on the (111) planes for
a random distribution of three different Burgers directions of [11"0], [101"] and [01"1].
The crystal was loaded uniaxially under constant strain rate of 10 s�1 in the [0 0 1]
direction. The intent of this example is to show the effect of boundary condition on
the resulting stress-strain curve. Hence, and for numerical reasons only, we consider
low dislocation density as can be deduced from Fig. 14.
Fig. 13a shows a typical dislocation configuration. The dislocation sources start

operating when the resolved shear stress on the dislocation reaches the critical shear
stress. The resulting stress-strain curves are shown in Fig. 13b. The figure shows the
difference between the strength of the crystal when the free-boundary effect (image
stress) is applied and when it is neglected. The percentage difference is about 7%
calculated at 0.05% yield strength. Of course this difference in behavior can be
attributed to image stresses. For the crystal with the free boundary, the dislocation
density stays constant until the dislocation sources start operating (Fig. 14). The
magnitude of the flow stress is mainly dictated by the size of the FR source (i.e. the
distance between the two pinned ends of the source) and the size of the simulation
cell, or simply the average size of the dislocation mean free path. In principle, stress
required to propagate a dislocation form a FR source is inversely proportional to
the source size (values more consistent with experiments require the simulation of
larger simulation cells with higher dislocation density and periodic boundary con-
ditions; a task which is being undertaken and the results will be reported in a future

Fig. 14. Evolution of dislocation density with strain for different strain rates.
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article). When the sources start operating, the dislocation density increases up to a
saturation value at which the portion of the dislocation segments generated by the
sources are equalized by the dislocation segments disappearing on the free surface
and by dislocation-dislocation annihilation. As the strain rate increases, the satura-
tion value of the dislocation density increases as can be deduced from Fig. 14. The
effect of the cell size on the results was also investigated for the same dislocation
source distribution. The size of the crystal was increased to 22,000b (6.29 mm),
30,000b (8.58 mm) and 40,000b (11.44 mm. The result showed that one should not

Fig. 15. The nanoindentation simulation, the FEA mesh and stress contour.
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simply neglect the effect of the boundaries on the stress–strain curve regardless of
the size of the cell. Similar results are given in the work of Yasin et al. (2001).

5.6. Nanoindentation

With the msm3d model one can also investigates deformation and strength in thin-
layered structures. Here we present results pertaining to the nanoindentation test. A
variety of shapes and sizes of indenters can be used for different goals. In this study,
the focus is on spherical indenters with nano-meter size scale. The indenter has 192
nm radius of curvature (‘‘Berkovich’’ style indenter), and the test sample is Fe–3%
Si single crystal with �=81.4 MPa, �=0.29, �m=7870 kg/m3, b=2.4x10�10 m, side
dimension=3–4 mm Oxide thin film, thickness=10.0 nm, �=120 MPa, �=0.25.
An experiment was performed to compare the results with the msm3d results and

were reported in Bahr and Zbib (submitted). First, the sample was loaded, then a
hold segment was applied for creep to take place and then the sample is unloaded to
a certain point after which a hold was applied to measure instrument drift, and
finally the sample was unloaded. The load was applied normal to the (001) plane.
For the numerical simulations using the msm3d model, the sample is a rectangular
parallelepiped with 3.65 mm (15,200 b) in width, 3.65 mm (15,200 b) in depth and 0.72
mm (3000 b) in thickness (Fig. 15a). This size is considered sufficiently large to deal
with 192 nm-indenter radius. The simulated sample was divided into 19�19�3 ele-
ments. The size of each element is 192�192�240 nm. The dimensions of the element
are selected to be of the same size as the indenter diameter for the sake of simplicity
in applying the load. The load is applied on the element(s) in the middle of the upper

Fig. 16. Results of the nanoindentation simulations. (a) Developed dislocation structure underneath the

indenter, and (b) the predicted indentation depth showing the development of surface distortions.
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(001) surface in such away that the load is distributed on one element when it is less
that 50% of the maximum load. Thereafter it is distributed on nine elements such
that 20% of the load is applied on the middle element surface and the rest of the
load is equally distributed on the other eight elements surfaces. Selecting one or nine
elements surfaces gives the closest approximation to the circular area of contact
during indentation and distributing the load this way is a good approximation to the
Hertz pressure distribution expected during contact. The base of the sample is fixed
in all directions. Several initial dislocation distribution configurations are used: one
dislocation source, two dislocation sources and random distribution close to the
area of contact, the length of the sources ranges between 1000 and 1200b. The stress
field during nanoindentation is shown in Fig. 15b. For the case of random distribu-
tion of dislocation sources, the evolution of dislocations is shown in Fig. 16a and the
depth during nanoindentation as predicted by msm3d is shown in Fig. 16b. The
resulting dislocation structure and predicted depth are consisted with experimental
observations reported by Zielinski et al. (1995) and Bahr and Zbib (submitted).
In conclusion, a multiscale model coupling 3D discrete dislocation dynamics with

continuum finite element model based on elasto-viscoplasticity has been developed.
A method based on the super-position principle is outlined for modeling dislocation-
surface interactions in both homogeneous and heterogeneous materials. It is sug-
gested that this new hybrid approach provides an explicit means for investigating
complex small-scale plasticity phenomena, including surface effects, ledges, micro-
schear bands, dislocation boundaries, deformation of thin layers.
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